

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Future of Java
Post-JDK 9 Candidate Features

Jan Lahoda
Java compiler developer
Java Product Group, Oracle
September, 2017

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement

The following is intended to outline our general product direction. It is
intended for information purposes only, and may not be incorporated
into any contract. It is not a commitment to deliver any material, code,
or functionality, and should not be relied upon in making purchasing
decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole
discretion of Oracle.

4

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Overview

• Java language and platform evolution goals:
– Make it easier to build and maintain reliable programs
– Keep migration compatibility

• Reading is more important than writing

• Many enhancements done over the years
• Some possible future enhancements noted here

– Some may happen sooner, some later, some never
– Anything can change, no specific timeline

5

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Schedule

• More frequent (feature) releases
• Proposed:

– Feature releases every 6 months (March, September)
– Long-term support releases every 3 years

• More in the proposal:
– https://mreinhold.org/blog/forward-faster

6

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Improving type inference

• Java is strictly typed, no change planned
• Explicit types not needed in many cases, though:

– Set<String> ns = Collections.<String>emptySet();
– Set<String> ns = new HashSet<String>();
– ns.removeIf((String s) -> s.isEmpty());

• Common property: does not affect API
– Contracts should be explicit

7

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Improving type inference

• Next opportunity: type inference for local variables
URL url = new URL("http://www.oracle.com/");
URLConnection conn = url.openConnection();
Reader reader = new BufferedReader(

new InputStreamReader(conn.getInputStream()));
• Becomes:
var url = new URL("http://www.oracle.com/");
var conn = url.openConnection();
var reader = new BufferedReader(
 new InputStreamReader(conn.getInputStream()));

8

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Taming Boilerplate - Data Classes

• Some boilerplate has been avoided (e.g. lambdas)
• More remains, e.g. “mandatory” methods in domain objects:
public class Point {
 public final int x;
 public final int y;
 public Point(int x, int y) { … }

 @Override
 public int hashCode() { … }

 @Override
 public boolean equals(Object obj) { … }

 @Override
 public String toString() { … }

}
9

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Taming Boilerplate - Data Classes

• IDEs can generate these methods
• Need to be maintained, read, etc.
• How about:
public class Point (int x, int y) {}
• Constructor, equals, hashCode, toString autogenerated
• +further important methods could be as well

10

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Pattern Matching

• A common code:
if (obj instanceof Integer) {
 Integer i = (Integer) obj;
 int v = i.intValue();
 System.err.println(“Integer: “ + v);
}
• Check a condition, cast and retrieve attribute(s)
• Verbose and error-prone

● Motivation

11

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Pattern Matching

• How about:
if (obj matches Integer i) {
 int v = i.intValue();
 System.err.println(“Integer: “ + v);
}
• matches combines instanceof and variable binding (+more)
• Much clearer, safer

● matches with bind

12

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Pattern Matching

• Or even:
if (obj matches Integer(int v)) {
 System.err.println(“Integer: “ + v);
}
• “int v” is a nested pattern – looking “inside” the object

(could use a new “mandatory” method, btw)
• Patterns can nest as deep as needed

– class Line(Point start, Point end) {}
– Line(Point(int sX,int sY),Point(int eX,int eY))

● matches with nested patterns

13

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Pattern Matching

• Type in (nested) pattern can be inferred:
 Line(Point start, Point end)
=> Line(var start, var end)
• Or unimportant elements ignored:
Line(var start, _)
• Constants can be patterns too:
x matches 42
x matches Line(Point(0, 0), _)

● other patterns

14

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Pattern Matching

• Switch statement fairly limited:
– Only accepts int, enum and String

• “multi-arm if” - could use patterns as well?
switch (expr) {
 case Integer i: println(“Integer: “ + i); break;
 case Double d: println(“Double: “ + d); break;
 case Point(int x, var y):

println(“Point: “ + x + “, “ + y); break;
}

● switch

15

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Pattern Matching

• Switch expression of any type
• Also supports “case null:”
• Migration aided using constant patterns:

switch (expr) {
 case 42: println(“42!”); break;
 case Integer i: println(“Integer: “ + i); break;
}

● switch

16

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Pattern Matching

• String text;
switch (expr) {
 case Integer i: text = “Integer: “ + i; break;
 case Double d: text = “Double: “ + d; break;
 default: text = “Unknown”; break;
}
• Relies on definite assignment (DA)

● Exhaustive switch

17

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Pattern Matching

• How about:
• String text =

 switch (expr) {
 case Integer i -> “Integer: “ + i;
 case Double d -> “Double: “ + d;
 default -> “Unknown”;
 }
• More obvious all variants covered (checked)

● Exhaustive switch

18

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Pattern Matching

• Patterns:
– Constant patterns
– Type test patterns
– Destructuring

(nested) patterns
– var patterns
– '_' (anything)
– 'case null:'

● Conclusion

19

• Uses:
– Matches expression
– Pattern based switch
– Expression switch

• Likely to be done in phases over
several releases

• Currently prototyped:
– constant and type test patterns

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Valhalla

● Memory access (cache miss) is slow – dereferences costly
● Consider:
Point[] pArr = …
pArr[0].x + pArr[1].x + ...

● The array is an array of pointers to the actual data:
– [0] → [x0, y0]
– [1] → [x1, y1]
– [2] → [x2, y2]

20

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Valhalla

● For “int[]” - ints are inlined in the array:
– [x0, x1, x2, ….]

● How about inlining custom classes?
– [[x0, y0], [x1, y1], [x2, y2]]

● But without compromising readability and maintainability
● => value classes

21

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Valhalla

● “codes like a class, works like an int”
● Do not have identity, only value
● Their values inlined in arrays, enclosing objects:
Line { Point start; Point end; }
=>
Line { start_x; start_y; end_x; end_y; }

● “user-defined primitive”

● Value Classes

22

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Valhalla

● Significant changes needed for full support
● Currently works on “minimal value types” prototype
● To evaluate and experiment without significant language

changes

● Value Classes

23

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Conclusion

● Many new features under investigation:
– Improved type inference (“local variable type inference”)
– Data classes
– Pattern matching
– Value classes
– (and many more)

24

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Conclusion

● Everything is a subject to change
– Things may or may not happen
– No specific timeline/release
– Details likely to change

● Continued

25

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Q & A

26

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 27

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Title, Subtitle, and Content Layout
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

