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Safe Harbor Statement

The following is intended to outline our general product direction. It is 
intended for information purposes only, and may not be incorporated 
into any contract. It is not a commitment to deliver any material, code, 
or functionality, and should not be relied upon in making purchasing 
decisions. The development, release, and timing of any features or 
functionality described for Oracle’s products remains at the sole 
discretion of Oracle.
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Overview

• Java language and platform evolution goals:
– Make it easier to build and maintain reliable programs
– Keep migration compatibility

• Reading is more important than writing

• Many enhancements done over the years
• Some possible future enhancements noted here

– Some may happen sooner, some later, some never
– Anything can change, no specific timeline
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Schedule

• More frequent (feature) releases
• Proposed:

– Feature releases every 6 months (March, September)
– Long-term support releases every 3 years 

• More in the proposal:
– https://mreinhold.org/blog/forward-faster
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Improving type inference

• Java is strictly typed, no change planned
• Explicit types not needed in many cases, though:

– Set<String> ns = Collections.<String>emptySet();
– Set<String> ns = new HashSet<String>();
– ns.removeIf( (String s) -> s.isEmpty());

• Common property: does not affect API
– Contracts should be explicit
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Improving type inference

• Next opportunity: type inference for local variables
URL url = new URL("http://www.oracle.com/"); 
URLConnection conn = url.openConnection();
Reader reader = new BufferedReader(

new InputStreamReader(conn.getInputStream()));
• Becomes:
var url = new URL("http://www.oracle.com/");
var conn = url.openConnection();
var reader = new BufferedReader(
    new InputStreamReader(conn.getInputStream()));
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Taming Boilerplate - Data Classes

• Some boilerplate has been avoided (e.g. lambdas)
• More remains, e.g. “mandatory” methods in domain objects:
public class Point {
    public final int x;
    public final int y;
    public Point(int x, int y) { … }

    @Override
    public int hashCode() { … }

    @Override
    public boolean equals(Object obj) { … }

    @Override
    public String toString() { … }

}
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Taming Boilerplate - Data Classes

• IDEs can generate these methods
• Need to be maintained, read, etc.
• How about:
public class Point (int x, int y) {}
• Constructor, equals, hashCode, toString autogenerated
• +further important methods could be as well
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Pattern Matching

• A common code:
if (obj instanceof Integer) {
    Integer i = (Integer) obj;
    int v = i.intValue();
    System.err.println(“Integer: “ + v);
}
• Check a condition, cast and retrieve attribute(s)
• Verbose and error-prone

● Motivation
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Pattern Matching

• How about:
if (obj matches Integer i) {
    int v = i.intValue();
    System.err.println(“Integer: “ + v);
}
• matches combines instanceof and variable binding (+more)
• Much clearer, safer

● matches with bind
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Pattern Matching

• Or even:
if (obj matches Integer(int v)) {
    System.err.println(“Integer: “ + v);
}
• “int v” is a nested pattern – looking “inside” the object

(could use a new “mandatory” method, btw)
• Patterns can nest as deep as needed

– class Line(Point start, Point end) {}
– Line(Point(int sX,int sY),Point(int eX,int eY))

● matches with nested patterns
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Pattern Matching

• Type in (nested) pattern can be inferred:
   Line(Point start, Point end)
=> Line(var start, var end)
• Or unimportant elements ignored:
Line(var start, _)
• Constants can be patterns too:
x matches 42
x matches Line(Point(0, 0), _)

● other patterns
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Pattern Matching

• Switch statement fairly limited:
– Only accepts int, enum and String

• “multi-arm if” - could use patterns as well?
switch (expr) {
  case Integer i: println(“Integer: “ + i); break;
  case Double  d: println(“Double: “ + d); break;
  case Point(int x, var y):

println(“Point: “ + x + “, “ + y); break;
}

● switch
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Pattern Matching

• Switch expression of any type
• Also supports “case null:”
• Migration aided using constant patterns:

switch (expr) {
  case 42: println(“42!”); break;
  case Integer i: println(“Integer: “ + i); break;
}

● switch
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Pattern Matching

• String text;
switch (expr) {
  case Integer i: text = “Integer: “ + i; break;
  case Double  d: text = “Double: “ + d; break;
  default: text = “Unknown”; break;
}
• Relies on definite assignment (DA)

● Exhaustive switch
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Pattern Matching

• How about:
• String text =

  switch (expr) {
   case Integer i -> “Integer: “ + i;
   case Double  d -> “Double: “ + d;
   default -> “Unknown”;
 }
• More obvious all variants covered (checked)

● Exhaustive switch

18



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  |

Pattern Matching

• Patterns:
– Constant patterns
– Type test patterns
– Destructuring

(nested) patterns
– var patterns
– '_' (anything)
– 'case null:'

● Conclusion
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• Uses:
– Matches expression
– Pattern based switch
– Expression switch

• Likely to be done in phases over 
several releases

• Currently prototyped:
– constant and type test patterns
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Valhalla

● Memory access (cache miss) is slow – dereferences costly
● Consider:
Point[] pArr = …
pArr[0].x + pArr[1].x + ...

● The array is an array of pointers to the actual data:
– [0] → [x0, y0]
– [1] → [x1, y1]
– [2] → [x2, y2]
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Valhalla

● For “int[]” - ints are inlined in the array:
– [x0, x1, x2, ….]

● How about inlining custom classes?
– [[x0, y0], [x1, y1], [x2, y2]]

● But without compromising readability and maintainability
● => value classes
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Valhalla

● “codes like a class, works like an int”
● Do not have identity, only value
● Their values inlined in arrays, enclosing objects:
Line { Point start; Point end; }
=>
Line { start_x; start_y; end_x; end_y; }

● “user-defined primitive”

● Value Classes
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Valhalla

● Significant changes needed for full support
● Currently works on “minimal value types” prototype
● To evaluate and experiment without significant language 

changes

● Value Classes
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Conclusion

● Many new features under investigation:
– Improved type inference (“local variable type inference”)
– Data classes
– Pattern matching
– Value classes
– (and many more)
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Conclusion

● Everything is a subject to change
– Things may or may not happen
– No specific timeline/release
– Details likely to change

● Continued
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Q & A
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